Glycine betaine fluxes in Lactobacillus plantarum during osmostasis and hyper- and hypo-osmotic shock.

نویسندگان

  • E Glaasker
  • W N Konings
  • B Poolman
چکیده

Bacteria respond to changes in medium osmolarity by varying the concentrations of specific solutes in order to maintain constant turgor. The primary response of Lactobacillus plantarum to an osmotic upshock involves the accumulation of compatible solutes such as glycine betaine, proline, and glutamate. We have studied the osmotic regulation of glycine betaine transport in L. plantarum by measuring the overall and unidirectional rates of glycine betaine uptake and exit at osmostasis, and under conditions of osmotic upshock and downshock. At steady state conditions, a basal flux of glycine betaine (but no net uptake or efflux) is observed that amounts to about 20% of the rate of "activated"' uptake (uptake at high osmolarity). No direct exchange of 14C-labeled glycine betaine in the medium for unlabeled glycine betaine in the cytoplasm was observed in glucose metabolizing and resting cells, indicating that a separate glycine betaine efflux system is responsible for the exit of glycine betaine. Upon osmotic upshock, the uptake system for glycine betaine is rapidly activated (within seconds), whereas the basal efflux is inhibited. These two responses account for a rapid accumulation of glycine betaine until osmostasis is reached. Upon osmotic downshock, glycine betaine is rapidly released by the cells in a process that has two kinetic components, i.e. one with a half-life of less than 2 s which is unaffected by the metabolic status of the cells, the other with a half-life of 4-5 min in glucose-metabolizing cells which is dependent on internal pH or a related parameter. We speculate that the former activity corresponds to a stretch-activated channel, whereas the latter may be facilitated by a carrier protein. Glycine betaine uptake is strongly inhibited immediately after an osmotic downshock, but slowly recovers in time. These studies demonstrate that in L. plantarum osmostasis is maintained through positive and negative regulation of both glycine betaine uptake and efflux, of which activation of uptake upon osmotic upshock and activation of a "channel-like" activity upon osmotic downshock are quantitatively most important.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanism of osmotic activation of the quaternary ammonium compound transporter (QacT) of Lactobacillus plantarum.

The accumulation of quaternary ammonium compounds in Lactobacillus plantarum is mediated via a single transport system with a high affinity for glycine betaine (apparent Km of 18 microM) and carnitine and a low affinity for proline (apparent Km of 950 microM) and other analogues. Mutants defective in the uptake of glycine betaine were generated by UV irradiation and selected on the basis of res...

متن کامل

Physiological response of Lactobacillus plantarum to salt and nonelectrolyte stress.

In this report, we compared the effects on the growth of Lactobacillus plantarum of raising the medium molarity by high concentrations of KCl or NaCl and iso-osmotic concentrations of nonionic compounds. Analysis of cellular extracts for organic constituents by nuclear magnetic resonance spectroscopy showed that salt-stressed cells do not contain detectable amounts of organic osmolytes, whereas...

متن کامل

Responses of Bacillus subtilis to hypotonic challenges: physiological contributions of mechanosensitive channels to cellular survival.

Mechanosensitive channels are thought to function as safety valves for the release of cytoplasmic solutes from cells that have to manage a rapid transition from high- to low-osmolarity environments. Subsequent to an osmotic down-shock of cells grown at high osmolarity, Bacillus subtilis rapidly releases the previously accumulated compatible solute glycine betaine in accordance with the degree o...

متن کامل

RNase III initiates rapid degradation of proU mRNA upon hypo-osmotic stress in Escherichia coli.

Hyper-osmotic stress strongly induces expression of the Escherichia coli proU operon encoding a high affinity uptake system for the osmoprotectants glycine betaine and proline betaine. Osmoregulation of proU takes place at the transcriptional level by upregulation of the promoter at high osmolarity and repression of transcription by the nucleoid-associated protein H-NS at low osmolarity. In the...

متن کامل

Thermoprotection by glycine betaine and choline.

Glycine betaine is mostly known as an osmoprotectant. It is involved in the osmotic adaptation of eukaryotic and bacterial cells, and accumulates up to 1 M inside cells subjected to an osmotic upshock. Since, like other osmolytes, it can act as a protein stabilizer, its thermoprotectant properties were investigated. In vitro, like protein chaperones such as DnaK, glycine betaine and choline pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 271 17  شماره 

صفحات  -

تاریخ انتشار 1996